I have a matrix and I need to find a pattern inside this matrix. Matrix is:
1 0 0 1 1 1 0 0 0 1
0 0 0 1 1 0 1 0 0 1
0 1 1 1 0 0 0 1 0 1
1 0 1 0 0 1 1 0 1 0
1 1 1 0 0 0 1 1 0 1
0 1 0 0 1 1 0 1 0 1
1 1 1 0 0 0 1 0 0 1
1 0 0 1 0 1 1 1 0 1
Rules:
So the question would be:
Find the best pattern that respect the 3 rules. Example from the matrix shown:
So we go further on the 3rd row and we check 2nd position:1. We go 4th row, we check 4th position:0. Seems to respect the rules. There are opposite numbers on 2nd and 4th position, so we continue: 5th row, 2nd position:, and so on, but you will see on 7th row 2nd position:1 and 8th row 4th position:1; so the pattern of positions 2-4 is not good.
How could I make an algorithm based on these rules?
Maybe this will help (motivated by the comment to your question). This is a C++ sort of answer. This answer assumes 0 is always the number you pick, but you can easily edit this to allow 1 to be first.
int firstPos, secondPos;
for(int i = 0; i < 10; ++i)
if(matrix[0][i] == 0)
firstPos = i;
for(int i = 0; i < 10; ++i)
if(matrix[0][i] == 1)
secondPos= i;
bool success = true;
for(int i = 0; i < 10/2; ++i)
if(matrix[2*i][firstPos] == matrix[2*i][secondPos])
success == false;
if(success)
cout << "success" << endl;
else
cout << "failure" << endl;
I would define a pattern by index of the first item (F) and index of the second item (S). I'll also assume that indices begin with 0 (instead of 1 as in your example). Both F and S can take a value between 0 and 9. Solution is simple. Have a double nested loop that runs F and S from 0 to 9, and in third innermost loop just verify that current F and S form a pattern.